An Assessment of Methods and Remote-Sensing Derived Covariates for Regional Predictions of 1 km Daily Maximum Air Temperature
نویسندگان
چکیده
The monitoring and prediction of biodiversity and environmental changes is constrained by the availability of accurate and spatially contiguous climatic variables at fine temporal and spatial grains. In this study, we evaluate best practices for generating gridded, one-kilometer resolution, daily maximum air temperature surfaces in a regional context, the state of Oregon, USA. Covariates used in the interpolation include remote sensing derived elevation, aspect, canopy height, percent forest cover and MODIS Land Surface Temperature (LST). Because of missing values, we aggregated daily LST values as long term (2000–2010) monthly climatologies to leverage its spatial detail in the interpolation. We predicted temperature with three methods—Universal Kriging, Geographically Weighted OPEN ACCESS Remote Sens. 2014, 6 8640 Regression (GWR) and Generalized Additive Models (GAM)—and assessed predictions using meteorological stations over 365 days in 2010. We find that GAM is least sensitive to overtraining (overfitting) and results in lowest errors in term of distance to closest training stations. Mean elevation, LST, and distance to ocean are flagged most frequently as significant covariates among all daily predictions. Results indicate that GAM with latitude, longitude and elevation is the top model but that LST has potential in providing additional fine-grained spatial structure related to land cover effects. The study also highlights the need for more rigorous methods and data to evaluate the spatial structure and fine grained accuracy of predicted surfaces.
منابع مشابه
Spatio-temporal analysis of diurnal air temperature parameterization in Weather Stations over Iran
Diurnal air temperature modeling is a beneficial experimental and mathematical approach which can be used in many fields related to Geosciences. The modeling and spatio-temporal analysis of air Diurnal Temperature Cycle (DTC) was conducted using data obtained from 105 synoptic stations in Iran during the years 2013-2014 for the first time; the key variable for controlling the cosine term i...
متن کاملApplication of a Land Surface Model Using Remote Sensing Data for High Resolution Simulations of Terrestrial Processes
Most current land surface models (LSMs) coupled to regional climate models (RCMs) have been implemented at the several tens of kilometer spatial scales. Modeling land surface processes in LSMs at a finer resolution is necessary for improvements in terrestrial water and energy predictions especially for small catchments. This study has therefore assessed the applicability of high-resolution simu...
متن کاملUsing remote sensing data and GIS to evaluate air pollution and their relationship with land cover and land use in Baghdad City
The research used the satellite image (Landsat 7 ETM ) within the thermal infrared sixth band (TIR6) and geographic information system (GIS) to determine the air pollution and its relationship with the land cover (LC) and land use (LU) of Baghdad city. Concentration of total suspended particles (TSP), lead (Pb), carbon oxides (CO, CO2), and sulphur dioxide (SO2) were obtained from 22 ground mea...
متن کاملAir temperature estimation based on environmental parameters using remote sensing data
This study is aimed at estimating monthly mean air temperature (Ta) using the MODIS Land Surface Temperature (LST), Normalized Difference Vegetation Index (NDVI), latitude, altitude, slope gradient and land use data during 2001-2015. The results showed that despite some spatial similarities between annual spatial patterns of Ta and LST, their variations are significantly different, so that the...
متن کاملAn Improvement on Land Surface Temperature Determination by Producing Surface Emissivity Maps
Emissivity mapping of the Earth’s surface is the prerequisite to thermal remote sensing. A precise determinationof a surface's temperature is dependent upon the availability of precise emissivity data for that surface. The presentstudy area is a part of sugarcane plantation fields in the west part of Khuzestan province. In this work, TemperatureEmissivity Separation algorithm (TES) was applied ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 6 شماره
صفحات -
تاریخ انتشار 2014